

Abstract

To aid Mississippi cotton producers in variety selection decisions, cotton varieties are tested and evaluated annually at locations across the state representing a wide range of soil and climatic conditions. Varieties submitted for testing were divided into two groups: Cotton Variety Trial (CVT) and New Entry Test. The CVT was comprised of thirty-four varieties and was grown at five Delta region locations (Stoewille, Clarkdale, Rolling Fork, Tribbett, Itta Bena) and four Hill region locations (Miss. State, Senatobia, Raymond, and Verna). The New Entry Test was comprised of thirten varieties and was grown at four locations. Stoewille, Thobett, Miss. State, and Verona. The New Entry rest varies of the evaluation of varieties performed by tested in the Mississippi Cotton Variety Triatis but are scheduled for commercial release within one year: Commercial varieties PHY 375 WHE, DP 0912 E2RF, was TS 458 E2RF were included as common "thed" varieties in all trials. Yield and fiber quality data will be presented

Introduction

All test plots consisted of two rows, 40 feet in length, with a row spacing of 38 or 40 inches. Experimental design for each truial consisted of a Randomized Complete Block with 4 replications. Recommended management practices were followed in each test. The on-farm cooperators decided planting dates, fertilizer rates, amount of supplemental irrigation, defoliation dates, insect and weed control strategies, and harvest dates.

The OVT was conducted at five Delta locations (Stoneville, Clarksdale, Rolling Fork, Tibbett, Itta Bana) and four Hill locations (Miss. State, Senatobia, Raymond, and Verona). NEW entry test was conducted at four locations. Stoneville, Tribbett, Miss. State, and Verona. Commercial varieties 5154562E7, DP0152EXFR and PHY375WRF were designated as check varieties in the tests.

Varieties were evaluated under standard management practices, including chemical control of weeds and insects with conventional herbicides and insecticides. For transgenic varieties, any potential advantage due to trans-genes was not evaluated.

Estimation of lint percentage, boll size, seed index (weight in grams of 100 fuzzy seed), and fiber properties was based upon handpicked 50-boll samples from 4 replications at each location. Samples were ginned on a 10-inch laboratory saw gin. HVI fiber property determinations were made by Starlab, Inc., Knoxville, TN. Yield determinations were based on the weight of seed cotton mechanically harvested from two row plots and the seed cotton weight of the hand picked samples.

Loan Price was determined by entering OVT fiber data into the Cotton Loan 2010 Calculator. The Loan Calculator was developed through Unding from Cotton Incorporated by Larry Factorer, Texas A&M Corpus Christi. The values are based on USDA premium and discount schedules for cotton entering the Commodity Credit Corporation (CCC) Ioan program (US National Loan Rate is \$0.52 pre b of lint for standard fiber characteristics). Thiommain presented presumes a standard leaf and color grade since this information is needed to calculate the values and is not available from OVT data. Color and leaf grade different than standard grades might affect the results. Value Lacodate the ratios and is the trainable find for table. Over the grade uniform that address due to grade single and the results. Yang per Arer is simply the Loan Price multiplied by the lint yield per acce. 2010 Cróp Cotton Loan Evaluation Program was used to calculate the Gross Return value. Calculations were based on fiber properties, lint yield and a seed value of \$1400n. Gross Return Value provides a figure that incorporates both yield and theor quality. Results from this research are intended to be an aid for the growers to select varieties for next growing season. Certain data will also be of interest to ginners, millers, and other sectors of cotton industry.

The main feature of 2010 was prolonged hot temperatures, both day and night, which for most locations, resulted in very fasi development and early cut-out. The exception to earliness was where worms or plant bugs resulted in fruit loss and a later top crop

The results of OVT were presented in Table 1, 2, 3 and 4; NEW entry Test results were reported in Table 5, and 6; Tables 7 & 8 show the two and three year averages for OVT test in both Delta and Hill region. All result value represent least squares means. Table 9 is a summary of the growing conditions at each location.

At the bottom of by location data tables are summary of statistics, which are very important in interpreting the test results. Despite efforts At the bottom of by location data tables are summary of statistics, which are very important in interpreting the test results. Despite dottost to provide a uniform test environment, all experimenta se subject to a certain degree of error due to variation between plots arising from differences in soil byte, fentility, insect damage, weed pressure, etc. Therefore, yield potential (and performance with respect to other characteristics) carnot be measured with complete acroacracy. By conducting replicated thats we can account for or renove some, but not all of the effect of non-uniform conditions among plots. As a result, the mean performance of some varieties may be numerically different, but not satisfacted. Jifferent whor variability in the test is taken into acount. The Least Significant Difference (LSD) value estimates the smallest difference between two varieties that should be considered something other than natural variation.

The coefficient of variation (CV) is a measure of relative precision of a given trial and is generally considered to be an estimate of the mount of unexplained variation in that trial. In general, the higher the CV value, the tass precise a given trial. The R2 value is another measure of relative precision. The higher the R2 value, the more precise a given trial.

For the results of over locations, only the averages were presented but not the statistics. Because the growing conditions at these locations are different due to the soil texture, the rainfall, the management level, and so on, the interactions between locations and entries are highly significant

In any single year or location, a given variety may perform extremely well or extremely poorly due either to chance variation or to its In any single year of bolation, a given varies may periodin dualency wer of saturency poor use earlier to clinato setting the setting of the setting poor use earlier to clinato setting the setting of the set of the s

These tests do not encompass all growing and environmental conditions in the state, but they provide a guide to producers in selecting among varieties best suited for their growing conditions. The soil texture of each location can be found in the test location information box.

References

2010 Crop Cotton Loan Evaluation Program, developed by Dr. Larry Falconer, Extension Economist, Texas A & M University, Corpus Christi T

RPS.

Doll

TERRET

274 0.62 14.9

300 0.60

inch 1.15 1 28.3 29.3 29.9 29.9 29.3 29.1 29.3 30.4 26.9 31.0 29.0 29.0 27.1 28.5 26.9 29.0 27.1 28.5 26.9 29.0 27.1 28.5 26.9 29.0 27.1 28.5 26.9 29.0 27.1 28.5 26.9 29.0 27.1 28.5 27.4

94.63 93.90 83.91 83.91 83.99 84.10 84.44 84.06 84.16 84.51 84.51 84.51 84.51 84.51 84.51 84.51 84.51 84.51 32.82 31.13 30.27 27.81 30.90 31.99 32.91 32.85 32.85 32.85 32.86 33.70 30.87

101 0.72 6.74

67.6887.6767.7767.6767.67

Validy	Last Yeeki IS/9	Lind Percent %	Seedindex g	E of Size	Length	Uniformity Index %	Strength gfter	Elongation %	Micronale
PHY: 422WEF	1624	43.52	9.61	4.05	1.11	04.40	32.61	7.98	5.26
ST 5450 D2FF ck	1552	40.09	10.22	4.95	1.11	83.50	30.66	7.00	5.42
CIP 0920 02FF	1497	40.96	9.09	4.43	1.11	02.04	27.46	6.98	513
09R55582R2	1487	42.96	9.21	4.57	1.12	84.95	21.94	7.49	5.19
GT 6200 B2F	1474	40.35	9.09	4.75	1.10	83.60	29.30	7.57	6.60
CVP 1028 829F	1470	43.90	9.03	4.61	1.12	84.61	29.77	7.43	5.07
DP 1032 828F	1410	42.58	8.82	4.61	1.13	83.85	29.98	6.80	5.03
PHY 367 WRF	1456	40.68	9.46	4.53	1.13	83.77	29.44	7.27	4.92
ST 4288 ROF	1466	37.32	10.54	6.06	1.13	83.60	28.15	6.80	4.98
OP 0912 B26E /k	1454	39.27	9.72	4.62	1.08	83.62	29.70	7.30	5.41
PMY 175WEF ck	1415	41.45	9.59	4.52	1.11	84.20	29.40	6.92	4.95
AM 1050 D10F	1292	40.05	9.07	4.00	1.00	83.30	77.00	6.00	4.05
0210140255	1395	42.53	9.10	4.55	1.13	64.70	29.1.0	7.79	4.94
10 0016 0100	1383	41.60	0.74	4.54	1.00	43.73	38.63	6.05	4.00
0006100202	1320	42.42	0.70	4.00	1.12	04.40	28.50	7.78	5.00
THEY AND ARE	1.741	30.34	0.41	4.33		84.30	31.04	0.00	6.16
ENCLOSULATE	1363	20.07	0.60	4.11		04.70	32.04	8.17	617
00 1220 839F	1346	29.00	10.20	4.00	1.11	84.03	29.32	7.35	5.03
NO 1670 B10F	1745	40.76	0.04	6.06	1.10	84.11	75.00	7.64	6.17
0000000000000	1343	20.27	9.76	4.45	1.08	83.96	29.56	7.16	6.74
EM STANGOR	1.741	40.47	10.36	2.02		84.07	33.30	6.67	6.13
ELLY SEE WEE	1377	10.02	9.60	4.18	1.14	04.00	31.95	7.72	4.04
10489297	1317	42.50	9.10	4.65	1.14	84.32	28.48	7.33	4.93
CO ANNO BODE	1 304	10.54	0.77	4.00		83.60	12.40	6.95	1.75
NO 1450 B100	1796	10.51	9.99	4.33	1.12	84.11	28.07	6.95	4.70
0.0 1016 86	1704	41.76	0.05	2.00	1.10	04.75	29.92	7.74	6.10
1001410101	1262	43.74	9.05	4.65	4.4.2	64.33	29.92	2.42	5.00
0.0.1520.8395	1252	39.16	9.67	4.16	6.62	84.00	37.79	7.16	4.91
0.0 1010 8 107	1224	37.45	10.74	4.54	1.00	84.13	29.06	7.16	4.01
10 0943 0 200	1204	40.00	0.45	4.47	112	84.00	31.00	7.14	6.06
0010510207	1100	42.60	9.70	4.87	114	04.67	28.52	7.79	4.07
IN TRACILLET	1100	38.00	11.05	6.10	1.14	84.70	33.10	6.94	6.00
M 177311 82	1145	36.66	10.00	6.12	1.10	04.45	33.76	6.64	6.20
650-H0 210 CT	983	37.42	9.43	4.04	1.10	83.53	31.90	7.06	5.26
#EAN	1361	40.43	9.68	4.87	1.12	84.14	29.80	7.25	5.09
REPS	20	20	20	20	20	20	20	20	20

ck	1552	40.09	10.22	4.95	1.11	83.50	30.66	7.00	5.42
	1457	40.96	9.09	4.43	1.11	03.04	27.46	6.98	5.13
	1487	42.96	9.21	4.57	1.12	84.95	31.94	7.49	5.19
	1474	40.25	9.09	4.75	1.10	83.60	29.30	7.57	5.50
	1470	43.90	9.03	4.61	1.12	84.61	29.77	7.43	5.07
	1459	42.58	0.02	4.61	1.13	83.85	29.90	6.80	5.03
	1456	40.68	9.46	4.53	1.13	83.77	29.44	7.27	4.92
	1455	37.32	10.54	5.06	1.13	83.60	28.15	6.80	4.98
ck.	1454	39.27	9.72	4.62	1.08	83.62	29.70	7.30	5.41
ck	1416	41.45	9.59	4.52	1.11	84.28	29.40	6.92	4.95
	1292	40.05	9.83	4.00	1.08	83.30	27.90	6.00	4.95
	1290	42.53	9.18	4.55	1.12	84.29	29.19	7.29	4.94
	1382	41.60	9.74	4.54	1.09	92.72	29.53	6.85	4.99
	1370	42.42	9.79	4.00	1.12	04.40	28.59	7.28	5.00
	1361	39.25	9.41	4.22	1.11	84.39	21.04	0.00	5.16
	1353	29.97	9.60	4.21	1.11	84.79	32.36	0.17	5.17
	1346	29.80	10.20	4.00	1.11	84.03	29.32	7.39	5.03
r.	1345	40.36	9.84	5.05	1.10	84.11	29.00	7.66	5.17
	1342	29.27	9.76	4.45	1.09	83.96	29.56	7.26	6.24
	1341	40.62	10.35	4.87	1.11	84.07	30.30	6.82	6.12
	1327	29.87	9.50	4.18	1.14	84.06	31.95	7.72	4.94
	1317	\$2.50	9.10	4.55	1.14	84.32	28.48	7.33	4.93
	1305	38.64	9.77	4.60	1.12	83.90	27.58	6.95	4.76
	1296	38.62	9.09	4.30	1.12	84.11	28.07	6.90	4.78
	1295	41.26	9.95	4.95	1.10	84.25	29.92	7.78	5.10
	1262	43.74	9.05	4.55	1.12	84.33	28.99	7.47	5.09
	1253	28.16	9.67	4.35	1.12	84.00	27.79	7.35	4.91
	1224	37.45	10.24	4.54	1.09	04.12	29.06	7.26	4.01
	1216	40.00	9.45	4.47	1.12	84.02	31.00	7.34	5.25
	1109	42.60	9.38	4.62	1.14	84.67	28.52	7.29	4.97
	1160	28.00	11.05	5.10	1.16	84.79	33.10	6.96	5.20
	1145	36.56	10.00	5.32	1.10	04.45	33.24	6.64	5.29
T	983	37.42	9.43	4.84	1.10	83.53	31.90	7.06	5.26
	1361	40.43	9.68	4.87	1.12	84.14	29.80	7.25	5.09
	20	20	20	20	20	20	20	20	20

Marinety	Stoneville	Clarksdate	Rolling Fork	Mallena	Triblet	OVERLOCATION
	10/2	10/9	to/a	Th/a	10/9	10/9
PHY: 499YARF	1604	1771	1445	1728	1572	1824
ST 5458 B2RF ck	1711	1608	1591	1194	1854	1552
DP 0920 92RF	1568	1577	1542	1313	1487	1497
19R55582R2	1594	1577	1349	1456	1462	1487
JT 5288 B2F	1526	1583	1617	1360	1283	1474
D/P 1028 82/9F	1274	1529	1470	1532	1546	1470
5P10328298	1602	1342	1478	1334	1541	1459
PHY 367 WRF	1516	1619	1371	1251	1522	1456
JT 4288 B2F	1327	1761	1466	1275	1457	1455
OF 0912 825F ck	1555	1491	1405	1337	1400	1454
PHY 375WEE ck	1343	1562	1366	1313	1507	1416
AM 1550 R2FF	1425	1579	1389	1181	1290	1292
OP 1034 929F	1297	1424	1621	1361	1258	1290
OP-0935-939F	5271	1500	1510	1303	1327	1382
0966198282	1244	1427	1345	1322	1462	5370
Phile absorbe	1471	1509	1364	1071	1299	1361
Party Salaward	1471	1437	1167	1327	1374	1353
00 3220 B2EF	1417	1296	1329	1220	1369	1346
50 1570 8396	1206	5436	1229	1201	1226	1345
08-0924 8285	1319	1509	1247	1243	1212	1342
FM 1740 R2F	1459	1243	1461	1059	1482	1341
DUCY SASYARDS	5322	1497	0.275	1196	1164	5307
0210489396	1314	1224	1073	1338	1637	1217
0.0 AT20 828F	1303	1304	1334	1034	1470	1306
00.2450 8295	1290	1246	1322	1116	1325	1296
CO 3035 EF	1424	1561	1266	1080	1106	1205
000420202	1014	1380	1203	1345	1370	1262
0.1520 B26F	1326	\$220	1263	1307	1262	1252
0.0 3020 8285	1303	1262	1214	1060	1101	1224
02/09/49/02/05	1121	1322	1227	1196	1217	1216
0010500000	015	6 2 2 7	1176	1177	1247	1159
EM 18451187	1141	1367	1054	1074	1212	1160
FM 17731182	1141	1101	1124	1132	1162	11.00
880-H9 210 CT	1007	1127	1037	829	918	983
MEAN	1254	1445	1337	1247	1370	1351
LSD (P=.05)	176	242	177	203	211	90.2
R-Square	0.75	0.61	0.67	0.63	0.60	0.68
CV (%)	9.29	11.94	9.46	11.63	11	10.8
AEPS .	4	4	4	4	4	4

						Chillipmily			
l'ariety	LintYield	Lint Percent	Seedindex	Boll Size	Length	index	Strength	Elongation	Micronaine
	10/a				inch		ghex		mic
T 5458 82FF	1234	40.73	10.44	6.32	1,17	84.1	30.1	6.0	5.0
M 174083F	1215	41.83	10.57	5.33	1.16	84.9	29.4	6.7	4.8
HY 485WRF	1166	40.01	9.69	4.69	1.15	84.9	30.6	7.7	4.9
HY 375 WEF	1146	42.01	9.83	4.86	1.14	84.5	28.4	6.0	4.6
0.2570.8288	1004	41.21	10.07	5.36	1.14	84.7	29.1	7.4	4.0
M 155082W	1069	42.54	10.03	5.13	1.12	84.2	27.2	6.0	4.6
0 4020 82/9	1020	29.32	9.00	4.77	1.17	84.7	26.0	6.0	4.4
O 3035/FF	1015	42.05	9.90	5.20	1.14	64.7	29.7	7.4	4.7
0 1220 8 2 FF	1014	40.29	10.23	5.11	1.15	84.5	29.2	7.1	4.0
0 3520 8294	959	28.71	9.72	4.43	1.16	84.5	26.2	7.0	4.5
-0 3020 BORF	957	28.45	10.05	4.82	1.12	54.4	27.2	6.9	4.4

Carlada:	Last Vield	Lint Percent	Seedindex	Boll Size	Length	Uniformity index	Strength	Elonquition	Miccreate e
	10/2	5	9		inch		gtex		mic
PHY 499 WRF	1458	45.71	9.20	4.66	1.09	84.89	31.42	7.84	5.08
CIP 1028 8298	1445	45.22	9.07	4.55	1.11	84.32	20.64	7.29	5.08
D/P 0935 02FF	1421	43.50	9.76	4.00	1.09	03.51	20.75	6.79	4.07
CIP 1034 82FF	1419	44.45	9.27	4.61	1.13	84.18	28.55	7.22	4.09
09R61982R2	1400	44.18	9.34	4.75	1.10	84.61	28.37	7.09	4.94
DP 1032 829F	1204	44.24	9.18	4.40	1.13	84.13	29.74	6.70	5.01
10R05392R2	1292	45.63	9.14	4.57	1.12	04.06	20.49	7.24	5.01
CIP 1050 R3FF	1370	45.07	9.29	4.47	1.13	84.35	28.23	7.06	4.00
6T 5288-80F	1357	41.79	9.14	4.79	1.09	83.41	28.44	6.92	6.21
DP 0912 829F (K	1344	41.59	9.79	4.57	1.07	83.83	29.38	7.10	5.21
OP 1049 02FF	1322	44.41	9.23	4.57	1.12	04.41	27.81	7.17	4.09
09R55582R2	1321	44.95	9.02	4.41	1.12	04.41	31.56	7.21	5.04
DO 2578 83FF	1294	42.40	9.82	4.96	1.09	84.23	29.11	7.43	4.95
6T 5458-829F ck	1280	41.77	10.08	4.91	1.11	83.44	29.84	6.92	5.19
CP 0924 8298	1280	41.29	9.05	4.40	1.08	83.73	29.38	7.15	5.08
PWY 367 WRE	1277	42.80	9.22	4.22	1.12	03.99	29.04	7.05	4.74
DIP 0920 82FF	1275	42.56	9.35	4.42	1.10	83.69	27.30	6.79	4.91
PHY 565 WRF	1262	41.37	9.29	4.25	1.12	84.33	31.53	7.67	4.91
AM 1558 BORF	1259	42.68	9.62	4.02	1.07	83.68	26.76	6.62	4.01
PHY 375 WEE ck	1252	43.30	9.29	4.56	1.09	83.72	29.76	6.97	4.79
PHY 563 WRF	1225	41.42	9.35	3.95	1.09	84.42	30.76	7.84	5.10
FM 174002F	1220	42.33	10.11	4.05	1.11	03.09	29.27	6.62	4.04
0.0 2450 B2FF	1211	41.34	9.53	4.25	5.51	84.00	27.36	6.60	4.67
CG 3228 829F	1202	42.26	9.96	4.71	1.10	84.28	29.19	7.33	4.95
W 1845LL82	1187	29.88	11.07	5.14	1.17	84.80	32.68	6.79	5.00
ST 4200/02F	1164	29.30	10.52	5.07	1.11	83.64	27.62	6.71	4.90
DP 0549 82FF	1150	43.12	9.55	4.27	1.10	83.86	29.89	7.09	5.09
PHY ALS WEE	1148	40.86	9.35	4.12	1.09	83.87	31.06	7.58	5.05
FM 1773LL82	1128	39.19	11.33	5.23	1.15	83.81	32.53	6.59	5.07
CO 3035 FF	1117	43.53	9.64	4.77	1.08	04.11	29.32	7.57	5.03
CO 352182FF	1109	40.27	9.60	4.42	1.11	84.09	27.79	7.02	4.62
CO #020 929F	1064	40.56	9.54	4.32	1.12	84.07	27.32	6.76	4.53
CO 3020 829F	1821	39.29	9.75	4.37	1.07	84.13	27.46	6.83	4.43
\$50-H0 21ECT	948	39.44	9.42	4.52	1.10	03.55	31.61	6.90	5.34

Variety	Senatobia	Raymond	MIS State	Verma	OVERLOCATIONS
	10	tt/a	89	10/9	89
PHY RESIDE	1160	1372	1963	1370	1460
DP 1028 82FF	1239	1445	1039	1257	1445
DP 0935 82FF	1301	1276	1011	1294	1421
DIP 1034 B2FF	1204	1253	1944	1274	5419
09R61982R2	1146	1371	1804	1290	1400
DP 1032 82FF	1204	1260	1697	1225	1294
1090528292	1213	1358	1778	1222	1392
DP 1058829F	1101	1363	1725	1212	1370
ST 5288 82F	1344	1284	1636	1163	1367
DP 0912 82RF +k	1432	1202	1627	1214	1344
DP 104882RF	1204	1271	1612	1200	1322
0985558282	1195	1230	1610	1249	1321
DG 2570 82FF	1262	1064	1587	1264	1294
ST 5458 R2FF ck	1268	991	1569	1302	1280
DP 0924 82FF	1306	1166	1469	1199	1290
PHY 367 WEE	5092	1210	1516	1299	1277
DP 0923 82FF	1297	1097	1518	1197	1275
PHY S65WEF	968	1217	1660	1205	1262
AM 1550 B2RF	1098	1093	1646	1195	1250
PHY 375WRF ck	1160	1150	1403	1200	1252
PHOY SEGMENT	999	1234	1563	1105	1225
FM 174082F	1055	1179	1423	1223	1220
D0 2450 82/W	1262	1093	1351	1136	1211
CG 3220 838#	1060	1075	1449	1226	1202
FM 1845LLB2	992	1054	1549	1071	1167
ST 4288 BOF	11.05	990	1473	1059	1164
DP 0948 82RF	1138	1029	1284	1181	1158
PHY ANSWER	937	1051	1456	1149	1140
FM 1773LLR2	1015	870	1441	1087	1128
CG 3035 FF	505	1124	1560	1198	1117
CG 3520 838F	1195	1048	1072	1120	5109
CO 4020 BORF	1004	904	1240	1107	1064
0.0 3020 8386	953	929	1112	1090	1021
SSO-HO 210 CT	415	1083	1214	982	940
MEAN	1124	1159	1547	1192	1256
LSD (P+ 05)	247	160	244	93	00
A Source	0.64	0.72	0.66	0.69	0.78
C17 (00)	14.7	0.04	11.74	6.60	

Location	Soil Texture	Reinfall inches (planting to harvest)	Number of impations	Number of Insecticide Sprays	PlantingDate	HarvestDate
Soneville	Bosketivers Fine Sandy Loam Soll	6.64	5	5	May 24, 2010	October 11, 2010
Tarkodale	Dubbs Soll	10.11	Non-Impated	6	May 6, 2010	September 22, 2010
Rolling/Fork	Silly Clay Soll	11.52	NR	NR	May 7, 2010	October 4, 2010
Tribbert	Forestdale-like Silly Clay Loam Soll	0.16	3	4	May 11, 2010	September 29, 2010
ta Bena	Dubbs Soll	8.02	NR	NR	May 13, 2010	September 28, 2010
dios. State	Marietta Fine Sandy Loam	11.59	NR	4	May 19, 2010	October 7, 2010
/ersona	Leeper Silly loam	12.19	Non-impated	1	June 1, 2010	October 14, 2010
lavmond	Loring BillLoam	26.15	Non-impaled	0	May 5, 2010	Deptember 21, 2010
cenatobia .	MemphisSillLoam	9.77	Non-impaled	6	May 13, 2010	October 5, 2010

10.52 9.96 10.62 10.77 10.83 9.70 9.93 9.67 9.92 10.26 10.20 10.10 10.41 9.00 11.35 9.09 10.23

For more detailed information, please visit: http://msucares.com/crops/variety/

1 Delta Research and Extension Center, Mississioni State Un erona MS

2.	Dept. of Plant and Soil Science, Mississippi State University, Starkville, MS
2	Northoast Mississippi Research and Extension Contor Mississippi State University V